En física, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662) que se resume en la frase: la presión ejercida en cualquier parte de un fluido incompresible y en equilibrio dentro en un recipiente de paredes indeformables, se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.
El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.
También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos y en los frenos hidráulicos.
fisica 1101
lunes, 25 de abril de 2011
EJEMPLO PRINCIPIO DE ARQUIMEDES
PRINCIPIO DE ARQUIMEDES
El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen del fluido que desaloja». Esta fuerza, recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newton (en el SI).
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales y descrito de modo simplificado) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
Donde E es el empuje , ρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales y descrito de modo simplificado) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
PRESION HIDROSTATICA
Un fluido pesa y ejerce presión sobre las paredes sobre el fondo del recipiente que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática, provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas resultantes de las presiones ya no serían necesariamente perpendiculares a las superficies. Esta presión depende de la densidad del líquido en cuestión y de la altura a la que esté sumergido el cuerpo.
la presión hidrostática es la fuerza por unidad de área que ejerce un liquido en reposo sobre las paredes del recipiente que lo contiene y sobre cualquier cuerpo que se encuentre sumergido, como esta presión se debe al peso del liquido, esta presión depende de la densidad(p), la gravedad(g) y la profundidad(h) del el lugar donde medimos la presión (P)
P=p*g*h
Si usas las Unidades del Sistema Internacional la Presión estará en Pascales(Pa=N/m^2), la densidad en Kilogramo sobre metro cubico(Kg/m^3), la gravedad en metro sobre segundo al cuadrado (m/s^2) y la profundidad en metro (m), si te fijas (Kg/m^3)*(m/s^2)*(m)=(Kg/(s^2*m))=(N/m^2)
la presión hidrostática es la fuerza por unidad de área que ejerce un liquido en reposo sobre las paredes del recipiente que lo contiene y sobre cualquier cuerpo que se encuentre sumergido, como esta presión se debe al peso del liquido, esta presión depende de la densidad(p), la gravedad(g) y la profundidad(h) del el lugar donde medimos la presión (P)
P=p*g*h
Si usas las Unidades del Sistema Internacional la Presión estará en Pascales(Pa=N/m^2), la densidad en Kilogramo sobre metro cubico(Kg/m^3), la gravedad en metro sobre segundo al cuadrado (m/s^2) y la profundidad en metro (m), si te fijas (Kg/m^3)*(m/s^2)*(m)=(Kg/(s^2*m))=(N/m^2)
PRESION
En física, la presión (símbolo p)es una magnitud física escalar que mide la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar como se aplica una determinada fuerza resultante sobre una superficie.En el Sistema Internacional la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton actuando uniformemente en un metro cuadrado. En el Sistema Inglés la presión se mide en una unidad derivada que se denomina libra por pulgada cuadrada (pound per square inch) psi que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.
La presión es la magnitud que relaciona la fuerza con la superficie sobre la que actúa, es decir, equivale a la fuerza que actúa sobre la unidad de superficie. Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme.
La presión es la magnitud que relaciona la fuerza con la superficie sobre la que actúa, es decir, equivale a la fuerza que actúa sobre la unidad de superficie. Cuando sobre una superficie plana de área A se aplica una fuerza normal F de manera uniforme.
MOMENTUM ANGULAR
El momento angular o momento cinético es una magnitud física importante en todas las teorías físicas de la mecánica, desde la mecánica clásica a la mecánica cuántica, pasando por la mecánica relativista. Su importancia en todas ellas se debe a que está relacionada con las simetrías rotacionales de los sistemas físicos. Bajo ciertas condiciones de simetría rotacional de los sistemas es una magnitud que se mantiene constante con el tiempo a medida que el sistema evoluciona, lo cual da lugar a una ley de conservación conocida como ley de conservación del momento angular. El momento angular se mide en el SI en kg•m²/s.
Esta magnitud desempeña respecto a las rotaciones un papel análogo al momento lineal en las traslaciones. Sin embargo, eso no implica que sea una magnitud exclusiva de las rotaciones; por ejemplo, el momento angular de una partícula que se mueve libremente con velocidad constante (en módulo y dirección) también se conserva.
Esta magnitud desempeña respecto a las rotaciones un papel análogo al momento lineal en las traslaciones. Sin embargo, eso no implica que sea una magnitud exclusiva de las rotaciones; por ejemplo, el momento angular de una partícula que se mueve libremente con velocidad constante (en módulo y dirección) también se conserva.
Suscribirse a:
Entradas (Atom)